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One of the bottlenecks to building semiconductor chips is the increasing cost required 
to develop chemical plasma processes that form the transistors and memory storage 
cells1,2. These processes are still developed manually using highly trained engineers 
searching for a combination of tool parameters that produces an acceptable result  
on the silicon wafer3. The challenge for computer algorithms is the availability of 
limited experimental data owing to the high cost of acquisition, making it difficult to 
form a predictive model with accuracy to the atomic scale. Here we study Bayesian 
optimization algorithms to investigate how artificial intelligence (AI) might decrease 
the cost of developing complex semiconductor chip processes. In particular, we 
create a controlled virtual process game to systematically benchmark the performance 
of humans and computers for the design of a semiconductor fabrication process.  
We find that human engineers excel in the early stages of development, whereas  
the algorithms are far more cost-efficient near the tight tolerances of the target. 
Furthermore, we show that a strategy using both human designers with high expertise 
and algorithms in a human first–computer last strategy can reduce the cost-to-target 
by half compared with only human designers. Finally, we highlight cultural challenges 
in partnering humans with computers that need to be addressed when introducing 
artificial intelligence in developing semiconductor processes.

Semiconductor chips are at the core of every artificial intelligence 
(AI) system in the world, operating on digital 0 and 1 states defined 
by nanometre-sized transistor and memory cells. Fabricating these 
miniature devices on silicon wafers is a complicated manufactur-
ing process involving hundreds of specialized process steps, nearly 
half of which require complex chemical plasma processes, such as 
etching and deposition3. Ironically, developing these critical pro-
cesses that enable AI is still done by human process engineers using 
their intuition and experience, often turning to trial and error. The 
application of AI to process engineering for creating new chips is of 
general interest, as automation of this activity could evoke scenarios 
of the so-called ‘singularity’, at which AI effectively learns to build 
more of itself4,5.

AI has many examples of computer algorithms outperforming 
humans at complex tasks, such as playing board games such as chess 
and Go6,7. However, in these cases, the computer makes decisions only 
after training on or generating a large amount of inexpensive data. By 
contrast, collecting process data on silicon wafers is expensive: more 
than a thousand dollars per experiment for the wafer, plasma equip-
ment operation and electron microscopy. Consequently, engineers 
typically develop semiconductor processes by testing only on the order 
of a hundred—out of potentially many trillions of—different combina-
tions of plasma parameters, such as pressure, powers, reactive gas 

flows and wafer temperature. Unlike board games, which have clear 
rules, wafer-reactor systems are governed by an inestimable number 
of microscopic physical and chemical interactions between wafer 
material, plasma species and reactor parts8,9. The absence of sufficient 
data in a specific region of interest makes it difficult to form computer 
models with atomic-scale accuracy, known as a ‘little’ data problem10. 
Thus, the challenge we pose for AI is to reduce cost-to-target (that is, 
minimize the number of data needed to be collected) of developing 
a semiconductor process relative to an experienced human process 
engineer.

In this work, we benchmarked the performance of computer algo-
rithms relative to experienced human process engineers, focusing on 
a scenario in which an untrained computer has access only to the data 
collected. Inspired by AI approaches to chess in which computer agents 
compete against humans, we created a process engineering game in 
which the goal for a player—human or a computer algorithm—is to 
develop a complex process at the lowest cost-to-target. Operating such 
a competition using real wafers would be expensive and impractical 
owing to uncontrolled variability from incoming wafers, metrology 
and processing equipment that would make it difficult to interpret 
the results. To overcome these practical difficulties, we operated the 
competition on a sophisticated virtual platform that enables bench-
marking participants in the same process space.
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Virtual process game
The competition was operated in a virtual environment designed to 
resemble the laboratory, as shown schematically in Fig. 1. Our case 
study process is a single-step plasma etch of a high-aspect-ratio hole in 
a silicon dioxide film, one of the many etch steps used to manufacture 
semiconductor chips11. The simulation of this process was parameter-
ized and calibrated from existing data into a proprietary feature profile 
simulator, using physics-based and empirical relationships to connect 
an input tool parameter combination ‘recipe’ to an output etch result 
on the virtual wafer (Methods). To the participant, this simulator serves 
as an effective black-box9 conversion of a recipe (for example, pressure, 
powers and temperature) to the requirements of a process step needed 
to manufacture a semiconductor chip.

As in the laboratory, the goal of the game is to minimize cost-to-target 
of finding a recipe that produces output metrics that meet the target. 
The participant submits a batch (one or more recipes) and receives 
output metrics and cross-sectional profile images. The participant con-
tinues to submit batches until the target is met as defined in Extended 
Data Table 1, corresponding to the profile shown in Fig. 1. We define a 
‘trajectory’ as a series of batches carried out to meet the target. Esti-
mated from actual costs, we assign a cost of $1,000 per recipe for wafer 
and metrology costs and an overhead cost of $1,000 per batch for tool 
operation. Many potential winning recipes exist because of the high 
levels of degeneracy in the input parameter space. Still, we verified at 
the outset low odds of randomly meeting target: 0.003% per recipe 
based on 35,000 random samples.

Human benchmarking
The benchmark for cost-to-target was determined by human play-
ers. The volunteers included six professional process engineers 
with PhD degrees in the physical sciences: three senior engineers 
with more than seven years of experience and three junior engineers 
with less than one year of experience. The engineers designed their 
experiments using mechanistic hypotheses based on their previous 
knowledge of process trends and plasma parameter dependencies. 
They chose an average batch size of four recipes, using univariate or 
bivariate parameter changes in 95% of all recipe choices. For reference,  
three inexperienced individuals with no relevant process experience 
also participated.

Trajectories of the process engineers are shown in Fig. 2 (see Extended 
Data Fig. 1 for inexperienced humans and Extended Data Table 2 for a 
list of results). Their trajectories show qualitatively similar paths with 
incremental progress towards target, which we characterize into two 
stages: rough tuning and fine-tuning. Rough tuning refers to the initial 
rapid improvement towards target, whereas fine-tuning refers to the 
slow progress at the tail end of the trajectory at which engineers strug-
gled to meet all output metrics simultaneously. The senior engineers 
required roughly half the cost of the junior engineers for the same 
amount of progress. The winning human participant is senior engineer 
no. 1 with a cost-to-target of $105,000, as shown in the inset of Fig. 2. 
This is our ‘expert’ human benchmark.
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Computer algorithm benchmarking
The computer algorithms participating in this competition are Bayes-
ian optimizations—a commonly used machine-learning method for 
expensive black-box functions12–14. This class of algorithms has been 
studied on other applications in the semiconductor industry15–17. Three 
diverse varieties of Bayesian optimizations were selected: (1) Algo1 
using Markov chain Monte Carlo sampling18, a multivariate linear sur-
rogate model to compensate for the high computation cost of the 
sampling, and an expected improvement (EI) function. (2) Algo2 from 
an open-source software using the Tree-structured Parzen Estimator 
with an EI acquisition function19,20. (3) Algo3 using a Gaussian process 
model21 and a lower confidence bound acquisition function. The algo-
rithms all use scaled Euclidean distance as the objective function and 
started without any training and using non-informative priors22.

The algorithms were programmed to use output metrics but not 
output profile images, and so these were effectively ignored. Only one 
recipe per batch was used, the default for Bayesian optimizations23. 
Trajectories were repeated 100 times for statistical relevancy to account 
for inherent randomness in cost-to-target owing to the probabilistic 
nature of Bayesian optimization. To save computational time, trajec-
tories were truncated if they did not meet target before the expert 
benchmark of $105,000. We define ‘success rate’ as the percentage of 
trajectories with lower cost-to-target than the expert. For reference, the 
success rate from pure chance alone is estimated to be less than 0.2% 
(based on the 0.003% odds per recipe mentioned earlier).

The algorithms started each trajectory with a randomly generated 
32-recipe seed from a Latin hypercube, before generating the single 
recipe per batch. Results are labelled ‘no human’ in the panels of Fig. 3. 
Success rates are low, less than 1% for Algo1, 2% for Algo2 and 11% for 
Algo3. Altogether, only 13 out of 300 (less than 5%) attempts beat the 
expert. For reference, we allowed one Algo2 trajectory beyond the 
truncation limit, eventually meeting target at $739,000, nearly an order 
of magnitude more costly than the expert. Overall, the algorithms 
alone failed—badly—to win the competition against the human expert.

Human first–computer last strategy
We suggested that the algorithms failed because they wasted experi-
ments navigating the vast process space with no previous knowl-
edge. By contrast, we speculated that process engineers drew on 

their experience and intuition to make better decisions in their ini-
tial navigation. Therefore, we decided to test a hybrid strategy, in 
which the expert guides the algorithms in a human first–computer 
last (HF–CL) scenario. In this implementation, instead of random 
sampling, the expert provides experimental data collected up to a 
transfer point labelled A to E in Fig. 2 (also defined in Extended Data 
Table 3), along with search range constrained by the expert (Extended 
Data Table 4). For reference, the success rate for finding the target in 
this ‘constrained’ search range is estimated to be 13% based on a 0.27% 
per recipe chance of meeting target on 2,700 random samples. In 
the HF–CL strategy, once the computer takes over decision-making, 
the expert effectively relinquishes control and has no further role in 
experimental design. As before, for statistical relevancy, each condi-
tion was repeated 100 times.

In the HF–CL strategy, transfer point A provides the least amount 
of data from the expert to the computer algorithm. At this point, the 
median cost-to-target for HF–CL is still consistently higher than the 
expert alone, with a success rate of only 20% for Algo1, 43% for Algo2 
and 42% for Algo3. Although these values are substantially higher than 
the computer-only results, success rates of less than 50% indicate that 
costs are more likely to increase than decrease. Thus, although some 
initial guidance has improved the computer algorithm performance, 
HF–CL statistically fails at point A.

Figure 3 shows HF–CL results with progressively more data provided 
to the computer algorithm. We observe a V-shaped dependence of 
cost-to-target on the amount of expert data. From points A to C, access 
to more expert data reduces the overall cost-to-target as the algorithm 
performance improves. However, the trend reverses beyond point C, 
at which access to more expert data adds cost without clear benefit to 
the algorithm. The optimal performance of HF–CL for all algorithms 
is at point C. Algo3 greatly outperforms the other algorithms, attrib-
uted to either the flexibility of Gaussian process models or its different 
acquisition function, as the lower confidence bound algorithm has 
been shown to outperform the EI function23. HF–CL with Algo3 sets a 
new benchmark, with a median cost-to-target of $52,000—just under 
half the cost required by the expert alone.

Thus, the HF–CL strategy using the expert partnered with Algo3 won 
the game, by reliably reducing the cost-to-target of developing the 
plasma etch process relative to the expert benchmark. (See Extended 
Data Figs. 2 and 3 for HF–CL results with other humans and Extended 
Data Fig. 4 for HF–CL results without the constrained range.)
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algorithms: Algo1 (a), Algo2 (b) and Algo3 (c). The ‘no human’ results are 
without any help from humans, as reference. Columns A to E are the transfer 
points shown in Fig. 2. Each dot represents one of 100 independent trajectories. 
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represent the cost of data provided by the human.
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Interpretation
The virtual process environment provides a means of testing different 
approaches to process development in the semiconductor industry, 
an activity that would have been prohibitively costly in the real labora-
tory. The performance of humans across different skill levels—from 
experts to novices—provides qualitative points of comparison on the 
same process. The results show that senior process engineers develop 
processes at about half the cost-to-target of junior process engineers, 
indicating the importance of domain knowledge in our industry. The 
computer algorithms, lacking any previous training, showed poor 
performance relative to the expert, with fewer than 5% of all their trajec-
tories meeting target at lower cost-to-target. This confirms our initial 
expectation that computers starting from scratch will fail—they can 
meet the target, but at too high a cost. This is the little data problem 
manifested. We simply cannot afford the amount of data required for 
a computer to accurately predict a process recipe.

A key result of this study is the success of the HF–CL strategy. This 
strategy relies on an expert having the advantage early in process devel-
opment and the computer algorithm excelling in the later stage. By com-
bining these advantages, HF–CL was shown to reduce cost-to-target by 
half relative to the expert alone. The advantage of the human expert 
is attributed to the importance of domain knowledge, which these 
algorithms lacked, to qualitatively navigate the seemingly boundless 
possibilities of recipe choices. It might be intuitive that human guidance 
helps computers, but if algorithms are better at dealing with massively 
large complex problems, presumably they could have dominated at the 
beginning of development24. Instead, the computer algorithms became 
competent only after relevant data were provided and, preferably, 
with a constrained range as well. The principle of HF–CL is reminis-
cent of early efforts on other AI problems, suggesting that it could be 
generalizable to other little data problems. For example, in the begin-
ning of computer chess (before big data), the first program in 1951 was 
deployed for only the last two moves, whereas opening moves remain 
largely the same as those determined by humans6. In protein folding, 
the Nobel Prize technique of directed evolution also requires a ‘suitable 
starting point’ provided by humans25.

Although HF–CL might seem obvious in retrospect, the results show 
that it only works under certain circumstances. Even with the benefit 
of partnering with an experienced engineer, the success of HF–CL also 
depends strongly on when the human transfers to the computer: if too 
early, the algorithms do not have sufficient guidance; if too late, the 
human becomes a cost burden. This principle is embodied in the convex 
V-shaped cost-to-target dependence on more expert data in Fig. 3. Our 
interpretation of the V shape is that the depth represents the maximum 
cost savings relative to the expert, whereas the vertex represents the 
optimal transfer point from human to computer. The left side of the  
V corresponds to improved performance of the algorithms with more 
data. This portion of the V is consistent with previously reported obser-
vations and the general notion that more data is better10.

The more unusual and notable part of the V is the right side. This 
is where cost-to-target rises even as the algorithms obtain access to 
more expert data. Here the high cost of data has led to a cost penalty 
for poor recipe choices by the human, illustrating the importance of 
the quality of data. The value of intuition even for our experienced 
senior engineer has markedly diminished, enabling the computer algo-
rithms to become statistically more competent at choosing recipes. 
The overlap of the inverted regime with the fine-tuning stage suggests 
that this stage may be better relegated to computer algorithms. The 
observation of the V-shaped phenomenon for different human and 
computer combinations strengthens our belief that our insights are 
generalizable to this little data problem, despite the relatively small 
number of test cases. Furthermore, we believe that the V-curve phe-
nomenon is a natural consequence of trying to minimize cost in the 
limit of expensive data and tight tolerances—as is the case in many 

manufacturing processes—when the need for more data directly com-
petes with the cost of obtaining that data.

For the industry to implement the lessons of the HF–CL strategy to 
real semiconductor processes, it will be essential to understand how 
the insights apply to other processes and when humans should give 
up control—namely, how to identify the ideal transfer point ahead 
of time. We showed that the cost savings depends on the specific 
human–algorithm combination (Fig. 3 and Extended Data Figs. 2 and 3).  
Furthermore, we expect that the right side of the V might not be appar-
ent if targets were relaxed or, conversely, might dominate in processes 
that only need retuning, such as in chamber matching (or transferring a 
process to another tool). Human knowledge may be particularly impor-
tant in a high-dimensionality exploration space, effectively delaying 
transfer to the computer. Other factors that might affect the transfer 
point include process noise, process drift, target tolerance, batch size, 
constrained range and cost structure. We have much to learn. These 
topics are good candidates for further systematic study on the virtual 
process platform.

Beyond technical challenges, there will also probably be cultural 
challenges in partnering humans with computers26,27. In our study, we 
observed computer behaviour at odds with how process engineers usu-
ally develop processes. (1) The engineers almost exclusively used univar-
iate and bivariate parameter changes to rationalize their experimental 
design, whereas the computers used multivariate parameter changes 
without any explanation. Humans may find it difficult to accept recipes 
that they do not understand. (2) The engineers requested an average of 
four experiments per batch, whereas the computers were limited to only 
one experiment per batch—which is probably viewed as inefficient in 
the laboratory. (3) Engineers steadily progressed towards target (Fig. 2), 
whereas the computers used exploratory recipe-choice strategies that 
seem sacrificial (Extended Data Fig. 5). Counterintuitive and unemo-
tional moves are well documented in game-playing by computers28. In 
the laboratory, process engineers will need to resist intervening and 
inadvertently raising costs—without any guarantee of success. Ulti-
mately, trusting computer algorithms will mean changing decades of 
cultural expectations in process engineering. We hope that the virtual 
environment will help process engineers to better understand how to 
partner with computers in developing process technologies.

Outlook and conclusion
The application of AI to process engineering is still in its infancy. Human 
expertise will remain essential for the foreseeable future, as domain 
knowledge remains indispensable in navigating the earlier stages of 
process development. Yet, the success of the HF–CL strategy is showing 
us that humans, as in previous automation applications, will soon be 
relieved of the tedious aspects of process development. In the future, 
computer algorithm capability could be enhanced by encoding domain 
knowledge into the algorithms (either explicitly or indirectly) to ena-
ble earlier transfer points. There is rich literature on domain transfer 
learning, in which data from similar but not identical domains may be 
harnessed to accelerate learning in new domains29. Another area of 
interest in the AI field is imprinting domain knowledge in the form of 
a previous belief23,30. Indeed, creating or learning a good prior might 
be considered competition to the HF–CL strategy studied here. Other 
potential approaches in the literature include incorporation of mecha-
nistic physics models10. In any case, the highly nonlinear and complex 
relationships between input and output parameters mean that more 
data will be needed to update any previous model in the vicinity of the 
target, in which higher-order interactions become prominent. The 
perpetual need for more data in specific regimes of interest practically 
guarantees that process engineering will continue to be susceptible 
to the little data problem even with the help of computer algorithms.

In summary, although computer algorithms alone could develop a 
process independently by using large amounts of data, they failed to 
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do so at lower cost-to-target than the human benchmark. Only when 
partnered with an expert to guide towards a promising regime could 
the algorithms succeed. The results of this study point to a path for 
substantially reducing cost-to-target by combining the human and 
computer advantages. This unconventional approach to process engi-
neering will require changes in human behaviour to realize its benefits. 
The results of this study strengthen our confidence that we are on the 
path to changing the way processes are developed for semiconductor 
chips in a marked way. In doing so, we will accelerate a critical link in 
the semiconductor ecosystem, using the very computing power that 
these semiconductor processes enable. In effect, AI will be helping to 
create itself—akin to the famous M. C. Escher circular graphic of two 
hands drawing each other.
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Methods

Creation of the virtual process
The testing platform represents a typical engagement in our industry 
in which input parameters are chosen to meet target specifications pro-
vided by the semiconductor manufacturer for stringent performance 
criteria. Simulated tool parameters and ranges (‘Unconstrained’ values 
in Extended Data Table 4) are based on a generic dual-frequency plasma 
etch reactor31. Output metrics are obtained from the simulated profile.

For each chosen recipe, participants are given six output metrics 
along with a simulated SiO2 hole profile. For the output metrics, CD 
denotes ‘critical dimension’. Top CD is measured at the top of the SiO2 
hole, whereas ΔCD (top CD − bottom CD) is calculated by subtracting 
the width at 90% of the etch depth (‘bottom’) from top CD. Bow CD 
is synonymous with the maximum width of the feature. Mask height 
refers to the height of the photoresist mask designed to protect the 
underlying material from etching. The initial photoresist mask height 
is 750 nm and the initial CD is 200 nm in diameter.

It is worth noting that process time is not an input parameter because 
we simulate an etch depth detector to automatically stop the etch 
at the desired depth. To save computational time, the simulation is 
stopped if too much polymer deposits on top, CDs become too wide 
or the etch rate is too slow. The etch rate is calculated from post-etch 
depth divided by (virtual) time-to-end point.

Input parameters control plasma creation in the chamber above the 
semiconductor wafer. Plasma ignition turns incoming neutral gases 
into a complex mixture of ions, electrons and reactive radicals that 
impinge on the wafer. Process chemistry and input parameters used 
are typical for plasma etching of SiO2 (ref. 32). Radiofrequency powers 
ignite the plasma and modulate the ion energy and angular distribution 
functions. Fluorocarbon gases (C4F8, C4F6 and CH3F) control the SiO2 
etch by balancing the formation of volatile compounds, such as SiF4, CO 
and CO2, and deposition of a Teflon-like passivation layer to protect the 
mask and sidewalls33. Fluorocarbons and O2 flow parameters provide 
other means to increase or decrease carbon passivation, respectively. 
The etched profile is produced from the time evolution of ion and radi-
cal fluxes interacting with the materials on the wafer surface and by 
calculating how the etch front evolves with time.

We use a proprietary feature profile simulator, a substantially aug-
mented version of the commercial SEMulator3D process simulator 
from Coventor34. The version we use models the detailed physical 
and chemical processes occurring during etching, using plasma and 
materials parameters such as ion yield, ion flux and reactive sticking 
coefficients. We transform the 11 input parameters into a dozen plasma 
and material parameters for the profile simulator. Whenever possible, 
we use established principles, derived from kinetic theory of gases 
and the Arrhenius equation, to transform input parameters such as 
pressures and wafer temperatures to fluxes and reaction rates. When 
available, we use empirical relationships from the literature35–37 plus 
proprietary diagnostic measurements.

SEMulator3D uses a variety of computational methods, including  
discrete voxel operations, and both static and transient level-set 
methods38. The central model in this publication uses a transient 
level-set method with a proprietary flux-based high-fidelity plasma 
physics model. In the level-set method, there is no explicit representa-
tion of the points on the surface. Instead, the distance from the surface 
is stored as a distance field based on the volume around the structure 
rather than the surface. A partial differential equation is then solved in 
the volume to propagate the distance field through time, using speed 
r = r(x, t) (which represents etch, sputter and deposition rate) of the 
surface motion, suitably extended to be a volume quantity. The primary 
cost of computing r(x, t) at any instant of time is the computation of 
particle fluxes to each point on the profile surface. These fluxes differ 
from those provided by the plasma model owing to both shadowing 
inside a deep feature and particle reflection after collision with other 

points on the surface. In particular, the flux at a point x is computed as 
an integral over the surface of the portion of the particle density f(x, v) 
impinging on the surface, in which v is the velocity39. The flux-based 
level-set methodology is in contrast to a pseudoparticle method, which 
tracks a pseudoparticle through its lifetime from the plasma until it 
reacts and changes the chemical contents of a mesh cell in the model40.

To compute the simulated profiles in this publication, the flux inte-
gral was estimated numerically to compute the speeds r = r(x, t), which 
were then used in the finite difference scheme to solve the level-set 
partial differential equation38. To save computation time, we chose a 
large spatial discretization of 25 nm, which leads to an observed vari-
ability of ±2 nm on a typical run. Each simulation takes less than ten 
minutes using 16 central processing units cores and 32 GB of RAM.

The process test platform was iteratively cross-validated and 
adjusted until it qualitatively reproduces experimental recipe data 
from high-aspect-ratio contact applications. Sensitivity analysis was 
used to investigate deviations with every input parameter to ensure 
the model agrees with known trends.

The inner program of the process test platform was not divulged 
to humans tasked with solving the process challenge nor to the data 
scientists developing AI optimization algorithms. This was done to pre-
vent any possible result biases or reverse engineering of our platform.

Calculation for Progress Tracker
The Progress Tracker is our performance indicator for monitoring how 
close a process is to target. To clarify, this indicator is only to illustrate 
progress; it was not shown to any participants or used by any computer 
algorithms. In practice, process engineers monitor progress to target 
using a ‘control table’ in which process outputs, such as etch rate, are 
colour-coded depending on whether they met target, were close to 
target or failed to reach target. There is no standard single-value per-
formance indicator to represent this entire table, so we designed the 
Progress Tracker for this purpose. Our Progress Tracker has values 
from 0 to 1 depending on whether the process met spec (0), fails (1) or 
is somewhere in between (0–1). We classify etch stop and mask con-
sumption as failures (1).

To calculate the Progress Tracker, we take the mean of six scores 
from the six output metrics, normalized to 1, using the definitions 
in Extended Data Table 1. Each output metric is assigned a score of 
0 if it meets the target values. (All values must have a score of 0 for 
the process to meet target.) An output metric is assigned a score of  
1 if it is far from target. For output metrics that are close to target, the 
score was decreased linearly from 1 to 0. The Progress Tracker gives 
a score of 1 if the process fails because of etch stop (etch depth less 
than 2,000 nm) or if no mask remains (‘mask remaining’ equals 0). 
Once Progress Tracker values are computed for every experiment, 
the Progress Tracker is then plotted as the best score per batch with a 
rolling window of four batches in Fig. 2 and Extended Data Fig. 1 and 
one batch in Extended Data Fig. 5.

Data availability
Source data for Figs. 2 and 3 are provided with the paper. Further data 
that support the findings of this study are available from the corre-
sponding author on reasonable request.

Code availability
Demonstration of the simulation software used in this study, which 
operates on an internal platform, is available from the corresponding 
author on reasonable request.
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Extended Data Fig. 1 | Trajectories for inexperienced humans. The target is 
met when the Progress Tracker is 0. None of the inexperienced participants 
succeeded in meeting target. Note that the cumulative cost on the x axis is 
truncated at $200,000.



Extended Data Fig. 2 | HF–CL results with junior engineer. The blue line is the 
trajectory of junior engineer #3 alone, with cost-to-target of $190,000. The 
orange line on the secondary axis is the median cost of HF–CL (using Algo3)  
at the transfer points indicated (Extended Data Table 3). The V-shaped 
dependence of cost-to-target is apparent. HF–CL provides an impressive cost 
savings at point B′ compared with the junior engineer alone. However, the 
cost-to-target is still markedly higher (about double) than HF–CL using the 
expert–Algo 3 combination.
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Extended Data Fig. 3 | HF–CL results with different humans. Results for 
different humans partnered with Algo3 in the HF–CL strategy. See Extended 
Data Table 2 for notation. (Note that SE1 is point C in Fig. 3c and JE3 is point C′ in 
Extended Data Fig. 2.) Each human transferred an equivalent of $40,000 of 
data (or nearest full batch; see Extended Data Table 5) along with a constrained 
search range (Extended Data Table 4) to the computer. As In1 did not have 
enough experience to constrain the range, an adaptive range parameter 
searching 10% beyond the data distribution was used. Each dot represents one 
of 100 independent trajectories. Cost-to-target is the sum of the cost from both 
the human and the computer; orange lines are median cost-to-target; black 
horizontal lines indicate cost transferred from the human. The lowest costs are 
obtained with the highest experience levels. Overall, the results support that 
the HF–CL strategy is more effective at lowering costs when partnered with 
more experienced humans.



Extended Data Fig. 4 | HF–CL results without constraints or without human 
data. This figure shows results for HF–CL using the expert and Algo3. The first 
column is point C in Fig. 3c, in which Algo3 is provided with both 32 points of 
expert data and the constrained range. In the second column, Algo3 is provided 
with only the expert data but not the constrained range (instead using an 
adaptive range parameter searching 10% beyond the data distribution). In the 
third column, Algo3 is provided with the constrained range but no data from 
the expert, instead using 100 different 32-point Latin hypercube (LHC) random 
sampling seeds. In the fourth column, Algo3 is provided with no information 
from the human. The black arrows show % cost savings relative to the expert 
alone, with a dashed arrow in the third column because we did not charge for 
access to the constraint. Each dot represents one of 100 independent trajectories. 
The performance of Algo3 with both the expert constrained range and the 
human data suggests that the engineer, if possible, should provide both data 
and the constrained range when implementing HF–CL.
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Extended Data Fig. 5 | Samples of HF–CL trajectories. The target is met when 
the Progress Tracker is 0. The expert (SE1) trajectory is shown in grey, with 
transfer to the computer at point C. The blue line is the trajectory of the 

algorithm; the dashed grey line is the continuation of the trajectory for the 
expert only. The algorithm is Algo1 in panels a–c, Algo2 in panels d–f and Algo3 
in panels g–i.



Extended Data Table 1 | Process output targets

This table shows the output metrics that meet target and the values used in the calculation of the Progress Tracker. All units in nm except etch rate in units of nm min−1. CD, critical dimension; 
ΔCD, difference between the top and bottom CD of the feature.
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Extended Data Table 2 | Results of all human participants

The ‘expert’ is senior engineer #1. All engineers had PhD degrees. In, inexperienced participant; JE, junior engineer; SE, senior engineer. The inexperienced humans were not process engineers. 
*Participants did not meet target.



Extended Data Table 3 | Transfer points used in the HF–CL strategy

This table shows the recipes, batches and costs for transfer points used in the HF–CL strategy with the expert (SE1) and junior engineer #3 (JE3).
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Extended Data Table 4 | Input parameter search ranges

Unconstrained range along with the constrained ranges used in the HF–CL strategy. The constraints reduce each parameter by roughly one-quarter to one-half of the original range.  
All constrained ranges are the same size to simplify comparison; ranges differ as humans explored different regimes. sccm, standard cubic centimetres per minute.



Extended Data Table 5 | Transfer points for Extended Data Fig. 3

This table shows the recipes, batches and costs transferred in the HF–CL strategy in Extended Data Fig. 3. The abbreviations for the human participants are defined in Extended Data Table 2.
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